

INTEGRATED MICROSEISMIC AND 3D SEISMIC PERSPECTIVES

Thomas H. Wilson, Professor Geophysics West Virginia University

Audience and Date February 19, 2016

Presentation sequence

This presentation is divided into 5 parts. Some portions of the presentation can be skipped in the interest of time

- 1. Learning about your prospect
- 2. Hydraulic fracture stimulation, microseismic events and the local fracture network
- 3. 3D seismic and microseismic interpretation
- 4. Estimating the stimulated reservoir volume
- 5. Reservoir fracture model development

Subtopics are referenced in the following slides

- Locations of examples illustrated in the presentation
 Some pitfalls in developing a deeper unconventional play
 Subsurface characterization
- 2. [IV. Hydraulic fracture stimulation (HFS)
 V. Fracture rupture types produced by HFS
 VI. Microseismic events produced during HFS
- 3. VII. Estimating the subsurface fracture network from 3D seismic
 VIII. Interpreted microseismic event trends
 IX. Microseismic event trend relationships to discontinuities
 - - extracted from 3D seismic
- X. The stimulated reservoir volume from dots in the box to energy weighted estimates 4. -{
- 5. XI. Generating a discrete fracture network resulting from HFS XII. Modeling stimulation of the ambient natural fracture network

I. Hamilton Group distribution Appalachian Basin

Marcellus thickness map- we'll look at some data from a couple areas

An example Marcellus play Greene Co. PA – Stratigraphic context

Example central Appalachian

II. Some potential pitfalls How well do you know your play?

γ Ray Burley No. 1 Well

Structure Map of Upper Devonian First Bradford Sandstone

Initial wells drilled into the Marcellus reveal deeper structure is more complex

Structure Map of Upper Devonian First Bradford Sandstone

Sullivan (2013)

Structure Map after Nine Initial

Marcellus Vertical Wells

The slow evolution of a structural view of the reservoir unfolds It's time for 3D seismic

Structure Map after Nine Initial Marcellus Vertical Wells

Structure Map after First Five Marcellus Horizontal Wells

3D seismic reveals complex detached structures

Location of Seismic Line In Structure Map

In-Line Seismic Section

Sullivan (2013)

3D seismic reveals subtle structure and helps optimize well placement

Post-Seismic Structure Map and Horizontal Wells

Sullivan (2013)

III. Subsurface characterization 3D seismic view

Disharmony between deep and shallow structure revealed in 3D seismic

Interpreted 3D seismic structure on the Onondaga Ls./base of Marcellus

We will look at microseismic data from this group of wells

Multiple wells from a single pad to minimize environmental impact while maximizing reservoir contact

IV. Hydraulic fracture stimulation (HFS)

See https://www.youtube.com/watch?v=VY34PQUiwOQ Marathon Oil

Fluid and proppant injection under high pressure creates a network of fractures in your reservoir

See https://www.youtube.com/watch?v=VY34PQUiwOQ Marathon Oil

The initial segment or stage is isolated using a plug and the next stage is fracked

See https://www.youtube.com/watch?v=VY34PQUiwOQ Marathon Oil

The process is repeated for numerous stages along the length of the lateral

See https://www.youtube.com/watch?v=VY34PQUiwOQ Marathon Oil

V. Microseismic events produced during HFS The main hydraulic fracture is a tensile fracture.

Old faults and fractures in the Earth's stress field and the influence of increased pore pressure through hydraulic fracture stimulation

While these old faults and fractures are stable in the Earth's present-day stress field, they often fail during HFS in response to pore pressure increase. Recall that σ =S-P_p so if the pore pressure is increased through hydraulic fracture stimulation σ will shift to the right.

Old faults and fractures in the Earth's stress field and the influence of increased pore pressure through hydraulic fracture stimulation

The increase in pore pressure associated with hydraulic fracture stimulation can lead to rupture on previously existing faults and fractures optimally oriented with respect to S_{Hmax} for failure to occur.

Essential data: natural fracture orientations, orientations and magnitudes of principal stresses and pore pressure

The hydraulic fracture

These natural fractures remain closed

Shear failure may occur along these existing natural fractures

Horizontal Well

Sthrat

Shmin

7

Schoot

VI. Detected microseismic events associated predominantly with shear failure

Microseismic events well 1 colored by stage Treatment proceeds from toe to heel

Treatments can be conducted well-by-well or back and forth between wells in what is called a zipper frac

The zipper frac can help pre-stress the rock and make it easier for stages in adjacent wells to open fractures

https://www.youtube.com/watch?v=2LgmleH86_s Microseismic Inc

Geophone sensor locations

Events from three wells

Magnitude varies from about -2.5 to -1.4

Magnitude and energy in practical terms (taken from IHS webinar)

Magnitude -2.25 corresponds to energy released in dropping a gallon jug of milk from waist height

Moment Magnitude	Energy Release (kJ)	Energy Equivalent
-4	0.00006241	key press on keyboard
-3.5	0.00035138	heartbeat
-3	0.00197829	dropping an apple 6 ft
-2.5	0.01113778	air gun/bb gun
-2	0.06270569	powerful sling shot
-1.5	0.35303305	Firecracker
-1	1.98757607	home-run hit
-0.5	11.19005329	.50 caliber rifle
0	63.00000000	15 grams of TNT
0.5	355.00000000	35 mph car crash
1	1998.65000000	stick of dynamite
1.5	11252.39950000	WWII conventional bomb
2	63351.00918500	Quarry Blast
2.5	356666.18171155	lightning bolt
3	2008030.60303603	15 gallons of gasoline

Microseismic Range: .5 to -4

Events are largely confined between frac barriers

VII. Unveiling subsurface faults and fracture zones in 3D seismic using post-stack processing

Time variant trace amplitude slice view

Map view of extracted seismic discontinuity trends. What do they tell us about the reservoir?

Base of the Marcellus

These discontinuities are interpreted to be associated with old faults and fracture zones. These interpreted old faults and fracture zones may rupture in response to hydraulic fracture stimulation and enhance the stimulated reservoir volume (SRV).

In this area we see two prominent discontinuity trends

VIII. Interpreted microseismic event trends

Interpreted event trends

IX. Comparing discontinuity and microseismic event trends

The similarity of microseismic event trends to seismic discontinuity trends suggests seismic discontinuities are reactivated small faults and fracture zones in response to HFS.

Using failure criterion we estimate interpreted trends most likely to fail.

Evaluating the interpreted microseismic Interpreted microseismic event trends

We use the "most likely to fail" trends to define the natural fractures and faults in our discrete fracture network

500

1000

1500

2000

2500

Effective normal stress (psi)

3000

3500

4000

4500 5000

Seismic discontinuity trends most likely to

X. The stimulated reservoir volume (SRV)

Information about the SRV comes in the form of the microseismicity produced through HFS

Dots in the box estimation

We can refine the "SRV" box to "hug" the concentration of events

"Shrink wrapped" SRV estimate

0.192 billion cubic feet or about 1/19th of the initial dots-in-the-box estimate.

Using the shrink-wrap approach for the entire well we get an SRV of ~1.9Bcf

The whole-well SRV estimated in this manner is about ½ the SRV estimated for the *single* stage shown earlier using the dots in the box approach

The Energy Weighted SRV. Energy is related directly to surface rupture area

Characteristic linear dimension $\sim \sqrt{fracture area}$

Magnitude - fault plane area and slip relationships

These cross plots are based on the total cloud of microseismicity – not just the reservoir bound events

An energy weighted estimate of the SRV is related directly to ruptured surface area and has a higher correlation to production than the standard density weighted estimate

Energy release per unit volume directly related to total rupture surface area

If we have a few wells in the area we should be able to estimate long term production for additional wells

XI. Modeling the stimulated reservoir fracture network

- We use radiated energy release as a direct measure of rupture area created in response to HFS.
- We create an energy weighted grid to control the distribution of fractures in a model DFN used to represent the stimulated reservoir volume.
- In the absence of image log data we define fracture sets using microseismic event orientations most likely to accommodate failure.
- The energy weighted grid is scaled to represent fracture intensity
- Two grids are developed: one for each fracture set scaled in proportion to their relative occurrence

Energy weighted event density grid is used to control fracture intensity distribution

Model of the stimulated natural fracture network

Upscale into porosity and permeability cubes

XII. Recent reservoir modeling software developments allow us to model stimulation of the natural fracture network

Fracture orientations from the Quanta Geo log used to create model DFN for stimulation

Conclusions

- *3D seismic can help optimize development of your unconventional play*
- Understanding the local fracture network and orientation of the maximum horizontal stress can help maximize stimulated reservoir volume and cumulative production
- Energy density can be used as a predictor of longer term well productivity
- Information about the local fracture network can help you develop accurate models of the stimulated reservoir fracture system that may help design infill well placement

